

Create Complex Graphs with
GraphViz

Tamar E. Granor
Tomorrow’s Solutions, LLC

Website: www.tomorrowssolutionsllc.com
Email: tamar@tomorrowssolutionsllc.com

GraphViz is an open-source tool that creates graphs in a variety of formats. It can be used for
all kinds of networks, including organization charts, data structures, flow charts, family trees,
and more. It offers a tremendous amount of customization.

In this session, we'll see how to take advantage of GraphViz from VFP, including wrapper
classes to handle the messy parts.

Create Complex Graphs with GraphViz

Copyright 2020, Tamar E. Granor Page 2 of 46

Introduction
For several years, I’ve been helping convert a vertical market application for produce
distributors from FoxPro for Windows to Visual FoxPro. A couple of years ago, the client
asked me to look at how we could provide a graphical representation showing what
happened to a particular lot once it arrived: how it was broken into smaller quantities or
used to create other kinds of items, and then where those results were sold.

My client had recommendations for a couple of applications to do the graphing. He’d
already done some preliminary looking and thought GraphViz was the way to go. He
wanted me to confirm that and then make it work.

Given an example of what he wanted, it took me about 40 minutes to write very basic code
for that specific case. In the process, I got a feel for how GraphViz works and what kind of
options it would offer.

Using that example, I built wrapper classes to make it easy to use GraphViz for this task and
others.

Figure 1 shows a graph created by my client’s application. The different shapes and colors
represent different types of transactions in the application. For example, the bright green
triangle at the left is the original purchase order on which a load of cantaloupes was
ordered, while the yellow ovals are work orders showing whole cantaloupes being
converted to chunks and culls (leftover bits discarded), and the chunks being used to make
fruit salad.

Figure 1. This graph was produced using GraphViz on data from a vertical market application for produce
distributors.

This paper provides an overview of GraphViz and then focuses on how to use it in VFP. I’ll
show some of the options it provides for customizing your graph.

What is GraphViz?
GraphViz is an open source project to produce what the creators call “graph visualizations.”
The word “graph” here is used in its mathematical sense, but fortunately, you don’t have to
know too much about graphs in math to be able to use GraphViz.

Create Complex Graphs with GraphViz

Copyright 2020, Tamar E. Granor Page 3 of 46

The project’s home is http://graphviz.org/. It offers several different “engines” to take a
text description of a graph and create the visualization. In this paper, I’ll work with only
one of those engines, named “dot,” described as providing “‘hierarchical’ or layered
drawings of directed graphs.” What this means is that it can produce graphs with arrows,
as in the earlier example.

Setting up GraphViz

Installing and configuring GraphVia is fairly easy. (Finding the right download was harder
now than when I first installed GraphViz a couple of years ago. It may change again.)

In the Windows section of the Downloads page of the GraphViz website, click “Stable
Windows install packages” (see Figure 2). The page that appears is pretty sparse (Figure
3). Click “10/” and you’ll see the page shown in Figure 4.

Figure 2. To download and install GraphViz, click the highlighted item on the Downloads page.

Figure 3. The page for Stable Windows install packages doesn’t have much on it. Click the circled item.

http://graphviz.org/

Create Complex Graphs with GraphViz

Copyright 2020, Tamar E. Granor Page 4 of 46

Figure 4. Click the “cmake/” item on this page to continue the path to the download.

Click “cmake/” and on the next page, click “Release/”. Next, click “x64/” and you’ll finally
land on the page that contains the download. (You can skip the one page at a time path and
simply use the direct link
https://www2.graphviz.org/Packages/stable/windows/10/cmake/Release/x64/.)

On this page (Figure 5), click the EXE to download it. The version number may be different,
of course.

Figure 5. Click the EXE here to download the installation file.

Once the download is complete, double-click the file to begin installation. The examples in
this session (and the downloads) assume you’ve accepted the default installation path of
C:\Program Files\Graphviz 2.44.1, but since you’ll be running GraphViz from a batch file,
the exact location doesn’t matter. (If you chose another location, you’ll have to modify the
path specified in the classes provided in the downloads for this session.)

When I installed GraphViz this way, I found that one key file was missing. Config6 is
supposed to be created at installation, but it wasn’t. I’ve included a copy in the downloads
for this session. Put it in the Bin folder of your installation.

What do we mean by “graph”?
As noted earlier, the term “graph” here is used in the mathematical sense. The definition in
Figure 6 comes from Wikipedia
(https://en.wikipedia.org/wiki/Graph_(discrete_mathematics), captured August 31, 2020).

Figure 6. In this session, we’re talking about a specific kind of graph, the sort discussed in discrete
mathematics.

The basic components of these graphs are nodes, which represent some entity; and edges,
which connect nodes. In Figure 1 earlier in this document, the nodes represent various

https://www2.graphviz.org/Packages/stable/windows/10/cmake/Release/x64/
https://en.wikipedia.org/wiki/Graph_(discrete_mathematics)

Create Complex Graphs with GraphViz

Copyright 2020, Tamar E. Granor Page 5 of 46

kinds of transactions, and the edges, which are directed, show the flow through time from
one transaction to another.

Working with GraphViz
As noted earlier, GraphViz provides several different engines for generating graphs. We’ll
work with the engine called dot, which is provided as an EXE in the Bin folder of the
GraphViz installation. dot is designed to be used from a command line. It expects a text file
of instructions in a specified format and generates an output file in one or more formats.
Supported output formats include a number of graphical choices as well as PDF, PostScript
and quite a few others.

Creating a graph involves two steps: creating the text file with the instructions (I’ll refer to
that text file as the graph description file) and calling dot to turn those instructions into
output.

Documentation

The Documentation page of the GraphViz website includes a variety of types of
documentation. The ones I’ve found most useful are Command-line Usage
(http://graphviz.org/doc/info/command.html), which spells out how to call dot (more on
this in the next section of this paper), and those describing various options, such as output
formats, shapes and colors.

The documentation page also links a paper about dot, that includes examples with the data
used to generate them.

The website also includes a Gallery page (http://graphviz.org/gallery/) with lots of
examples of graphs. Clicking an example takes you to a page that shows the graph
description file used to create it.

Formatting data for dot

The dot engine expects data in a specific format that includes a header and then
information about the nodes and edges. To make it easier to explain, we’ll look at a simple
example. Figure 7 shows a very basic diagram of the employee hierarchy for the
Northwind database that comes with VFP. The graph description file that produced it is
shown in Listing 1.

http://graphviz.org/gallery/

Create Complex Graphs with GraphViz

Copyright 2020, Tamar E. Granor Page 6 of 46

Figure 7. This simple graph shows the employee hierarchy for the example Northwind database.

Listing 1. This specification, when run through dot, produces the graph shown in Figure 7.

digraph GVFile {
 graph[rankdir=TB];
 graph[label="Northwind Employees", labelloc=top, labeljust=left, fontsize=24];
 2[label="Andrew Fuller",fontname="Arial"];
 1[label="Nancy Davolio",fontname="Arial"];
 2 -> 1;
 3[label="Janet Leverling",fontname="Arial"];
 2 -> 3;
 4[label="Margaret Peacock",fontname="Arial"];
 2 -> 4;
 5[label="Steven Buchanan",fontname="Arial"];
 2 -> 5;
 8[label="Laura Callahan",fontname="Arial"];
 2 -> 8;
 6[label="Michael Suyama",fontname="Arial"];
 5 -> 6;
 7[label="Robert King",fontname="Arial"];
 5 -> 7;
 9[label="Anne Dodsworth",fontname="Arial"];
 5 -> 9;
}

The header indicates that kind of graph we’re creating. dot supports two kinds, known as
digraphs and graphs. Digraphs are directed and use an arrowhead at (at least) one end of
each edge, while graphs are undirected and do not include arrowheads. In this paper, we’ll
focus on digraphs. The header can also include an identifier for the graph. In Listing 1, the
header specifies a digraph to be named GVFile.

The main body of the graph specification is enclosed in curly braces. It includes
descriptions for nodes and edges and, optionally, various attributes of the graph. There are
three kinds of lines in Listing 1. The second and third lines contain graph level information.
The lines that begin with a number and are followed with square brackets describe nodes,
and the lines that show two numbers separated by an arrow describe edges. Each line ends
with a semi-colon, though they are optional.

Create Complex Graphs with GraphViz

Copyright 2020, Tamar E. Granor Page 7 of 46

The graph itself, as well as nodes and edges, can have attributes. Attributes are described
inside square brackets using name-value pairs in the form AttributeName=AttributeValue.
The list of attributes available is documented at http://graphviz.org/doc/info/attrs.html.

Describing the graph itself

Our example shows only a few graph attributes. They’re on the second and third lines of
the file, preceded by “graph” and wrapped in square brackets.

The rankdir attribute indicates what direction the graph runs. The value “TB” shown here
means top to bottom. You can also specify “LR”, meaning left to right; that’s the value used
for the graph shown in Figure 1.

The third line of the example has a set of attributes used to label the graph. Other attributes
for the graph as a whole include bgcolor for background color, landscape to indicate
whether to use portrait (false) or landscape (true) mode, and rotation to specify a number
of degrees to rotate the completed graph. See the documentation for the complete list.

Describing nodes

Node lines begin with an identifier for the node. In Listing 1, we’re using the primary keys
from the Employee records since they’re already known to be unique. The identifier is only
displayed in the graph if you don’t specify a label for the node.

There are lots of attributes you can specify for nodes. In this example, we specify only two:
label, which indicates the text to appear for the node and fontname, which indicates what
font to use for the label. We could, of course, specify fontsize (the default is 14 points) and
fontcolor (default is black).

By default, the node is enclosed in an oval. We can specify a different shape and details for
whatever shape we use. The details for putting a shape at a node are discussed later in this
paper, in the section “Varying shapes.”

Describing edges

The example shows the simplest version of edge specification: the identifier for one node,
followed by an arrow, followed by the identifier for another node. That produces an edge
with an arrowhead pointing to the second node.

You can specify attributes for an edge, such as color, arrowhead (which determines what
the arrowhead looks like), and a whole set about adding a label. See “Making edges more
informative,” later in this paper.

Running dot

dot is an executable; it accepts parameters to tell it what graph description to work with,
what kind of output to create, and where to put the output. Listing 2 shows the command
line used to create Figure 7 from Listing 1. (This command was run from a batch file,
where the whole thing was on a single line. It’s been wrapped onto multiple lines here for
readability.)

http://graphviz.org/doc/info/attrs.html

Create Complex Graphs with GraphViz

Copyright 2020, Tamar E. Granor Page 8 of 46

Listing 2. To run dot, call the EXE passing the desired output type, the input file name, and the output file
name.

"C:\Program Files\Graphviz 2.44.1\bin\dot.exe" -Tjpeg
C:\USERS\TAMAR\APPDATA\LOCAL\TEMP\20200904110422.GV
-o C:\USERS\TAMAR\APPDATA\LOCAL\TEMP\20200904110422.jpeg

The -T flag indicates the desired output type. See
http://graphviz.org/doc/info/output.html for a list of choices; it includes multiple graphic
formats, PDF, PostScript, and more.

The input file is specified without a flag and is the only item specified that way.

The -o flag specifies the name of the output file. Flags are case-sensitive, so “-o” is not the
same as “-O” (which indicates that output file names should be generated automatically
from the input file name and output file type).

Using GraphViz from VFP
To simplify creating graphs from my client’s application, I created a set of classes that make
it easy to build the graph description and then to run it through dot.

A generic GraphViz class

The top-level class, GVGraph (GVGraph.PRG in the downloads for this session) sets up the
properties and methods needed for both parts of graph creation. Some are abstract at this
level, while others contain code. The principal method, meant to be called from outside the
class, is MakeGraph, which constructs the graph description file and then generates the
graph; the code is shown in Listing 3.

Listing 3. This is the principal method in the GVGraph class. It manages the process of generating both the
graph description file and the graph itself.

PROCEDURE MakeGraph(tcDataCursor, tcFormat)

This.cErrorMessages = ''
This.Setup()
This.CreateColorShapeCursor()
This.LoadColorsAndShapes()

This.SpecifyGraphData(m.tcDataCursor)
IF NOT EMPTY(m.tcFormat) AND VARTYPE(m.tcFormat) == "C"
 This.SetGraphFormat(m.tcFormat)
ENDIF

IF EMPTY(This.cErrorMessages)
 This.GenerateGVFile()
ENDIF

IF EMPTY(This.cErrorMessages)
 This.GenerateGraph()
ENDIF

http://graphviz.org/doc/info/output.html

Create Complex Graphs with GraphViz

Copyright 2020, Tamar E. Granor Page 9 of 46

RETURN
ENDPROC

MakeGraph accepts two optional parameters. The first, tcCursor, is the alias for a cursor
containing the data to be graphed. The second parameter to MakeGraph, tcFormat,
specifies the desired output format.

MakeGraph starts with a bunch of set-up work. These classes manage errors by adding data
to the cErrorMessages property, which can be interrogated at any point, including after the
process is ostensibly complete. MakeGraph checks for errors at each major step and
proceeds only if there are none, so the first step is to clear that property to ensure no error
messages are left from a previous call.

The Setup method is abstract in this class, provided to allow any work that needs to be
done before generating the graph, such as setting any default values. We’ll look at how it
might be used in subclasses.

As noted earlier, GraphViz allows colors and shapes to be specified for nodes. My client
wanted the ability to link colors and shapes with transaction types, so I designed a system
that uses a cursor to hold a look-up table. The CreateColorShapeCursor method creates and
indexes the cursor. By creating the cursor here, I could ensure that it has the expected
structure, but filling it is a job for a subclass designed for a specify type of graph, so the
LoadColorsAndShapes method is abstract here.

In most situations however, you’re more likely to want to use shape and color to show two
different characteristics, so in this version of the class, CreateColorShapeCursor creates two
cursors, one for colors and one for shapes.

The class supports two approaches to specifying the data to be graph, either passing in a
cursor or running code as part of the graph creation process. The SpecifyGraphData
method (shown in Listing 4) called from MakeGraph calls either SetGraphData or
GetGraphData, depending on whether the tcCursor parameter is character. SetGraphData
simply sets the class’s cDataCursor property to the value passed in. GetGraphData is
abstract here; to use it, you need to put code into the method in a subclass.

Listing 4. The SpecifyGraphData method lets the class support two different approaches to supplying the data
to be graphed.

PROCEDURE SpecifyGraphData(tcCursor)
* Provide data for the graph. Can call either
* SetGraphData to point to an existing cursor
* or GetGraphData to do the work here.
* We'll decide based on whether the param is provided.

LOCAL llReturn

llReturn = .t.
IF VARTYPE(m.tcCursor) = 'C'

Create Complex Graphs with GraphViz

Copyright 2020, Tamar E. Granor Page 10 of 46

 llReturn = This.SetGraphData(m.tcCursor)
ELSE
 llReturn = This.GetGraphData()
ENDIF

RETURN

Next, if the tcFormat property has a non-empty, character value, the SetGraphFormat
method stores that value in the class’s cGraphFormat property. This class has no default
value for this property. It’s a good idea to specify one in a subclass; we’ll see an example in
“Graphing Northwind Employees,” later in this paper.

With all that set-up done, we’re ready to generate the graph description file; that’s the job
of the GenerateGVFile method, shown in Listing 5.

Listing 5. The GenerateGVFile method traverses the specified data to create the graph description file.

PROCEDURE GenerateGVFile
* Generate the GV file to be used for the graph

LOCAL llContinue

llContinue = .T.

* Check we have all we need
IF EMPTY(This.cDataCursor)
 This.AddError("Must specify name of data cursor.")
 llContinue = .F.

 IF m.llContinue
 IF NOT USED(This.cDataCursor)
 This.AddError("Data cursor must be open.")
 llContinue = .F.
 ENDIF
 ENDIF

ENDIF

IF m.llContinue
 IF EMPTY(This.cGVFile)
 This.GenerateGVFileName()
 ENDIF
ELSE
 RETURN .F. && bail out early
ENDIF

LOCAL lnOldSelect

lnOldSelect = SELECT()
SELECT (This.cDataCursor)

This.GenerateGVHeader()

Create Complex Graphs with GraphViz

Copyright 2020, Tamar E. Granor Page 11 of 46

SCAN
 lcNodeName = This.GenerateGVNode()
 This.GenerateGVNodeEdges(m.lcNodeName)
ENDSCAN

This.GenerateGraphFooter()

SELECT (m.lnOldSelect)

RETURN
ENDPROC

After confirming a data cursor has been specified and is open, GenerateGVFile ensures
there’s a name for the graph description file. If none has been specified, it calls
GenerateGVFileName, which creates a file name based on the current date and time, with
an extension of GV, using the temporary folder as the path. The code is shown in Listing 6.

Listing 6. If no file name is specified for the graph description file, this method creates one.

PROCEDURE GenerateGVFileName
* Generate a name for the GV file that contains the graph definition

LOCAL lcFileName

lcFileName = TTOC(DATETIME(), 1)
lcFileName = FORCEEXT(FORCEPATH(m.lcFileName,SYS(2023)), 'GV')

This.cGVFile = m.lcFileName

RETURN
ENDPROC

Once all that housekeeping is handled, GenerateGVFile begins the actual generation
process. All the methods called in this section are abstract, because the details of what
needs to be generated vary with both the graph type and the data.

First, GenerateGVHeader is called to generate the opening part of the file.

Next, we loop through the records in the data cursor. For each, we call GenerateGVNode to
create a node line and GenerateGVNodeEdges to create any edges involving that node.
(This was a design choice that makes sense for my client’s application. For some situations,
it might make sense to process the cursor once to create all nodes, and then again to add
the edges.)

Finally, GenerateGVFooter is called to create anything needed at the end of the file.

If GenerateGVFile is successful, the final section of MakeGraph calls GenerateGraph to
convert the graph definition to the desired output format. GenerateGraph, shown in Listing
7, does this by creating and running a batch file.

Create Complex Graphs with GraphViz

Copyright 2020, Tamar E. Granor Page 12 of 46

Listing 7. The GenerateGraph method constructs a batch file that runs the specified GraphViz graphing
engine to convert the graph description to a graph in the specified format.

PROCEDURE GenerateGraph
* Generate the graph from the GV file

LOCAL llContinue, lcGraphCall

llContinue = .T.

* Check conditions
IF EMPTY(This.cGVPath)
 This.AddError("GraphViz path must be specified.")
 llContinue = .F.
ENDIF

IF m.llContinue
 IF EMPTY(This.cGVFile)
 This.AddError("GV file must be specified.")
 llContinue = .F.
 ENDIF

 IF m.llContinue
 IF NOT FILE(This.cGVFile)
 This.AddError("GV file must be created before generating graph.")
 llContinue = .F.
 ENDIF
 ENDIF
ENDIF

IF m.llContinue
 LOCAL lcExt, lcFileName

 DO CASE
 CASE EMPTY(This.cGraphFile)
 IF EMPTY(This.cGraphFormat)
 lcExt = "JPEG"
 ELSE
 lcExt = This.cGraphFormat
 ENDIF

 This.cGraphFile = FORCEEXT(This.cGVFile, m.lcExt)

 CASE EMPTY(JUSTEXT(This.cGraphFile))
 * Add extension
 IF EMPTY(This.cGraphFormat)
 lcExt = "JPEG"
 ELSE
 lcExt = This.cGraphFormat
 ENDIF

 This.cGraphFile = FORCEEXT(This.cGraphFile, m.lcExt)

 ENDCASE

Create Complex Graphs with GraphViz

Copyright 2020, Tamar E. Granor Page 13 of 46

ELSE

 RETURN .F. && early exit
ENDIF

WAIT WINDOW NOWAIT 'Please wait, generating graph'

LOCAL lcBatFile
lcBatFile = This.CreateBatFile()

*-- Determine the call command to generate the graph
lcGraphCall = This.GenerateGraphCall()

STRTOFILE(m.lcGraphCall + CHR(13) + CHR(10), m.lcBatFile, .f.)
STRTOFILE("timeout /t 1", m.lcBatFile, .t.)

LOCAL llError

llError = This.RunBatFile(m.lcBatFile)

IF m.llError
 This.AddError("Error occurred while running batch file.")
ENDIF
WAIT CLEAR

RETURN
ENDPROC

After confirming that the path to the graphing engine has been specified and that the graph
definition file exists, the method confirms there’s an output type specified, using JPEG as
the default. It then constructs a name for the graph file.

If all that is successful, the CreateBatFile method is called to generate a name for a batch
file. In this case, the batch file is named makgraph.bat and is placed in the user’s temporary
folder, as shown in Listing 8.

Listing 8. By default, the batch file is named makgraph.bat and stored in the temporary folder.

PROCEDURE CreateBatFile
* Created method to abstract this

*-- create a variable for the batfile, and give it a value
LOCAL lcBatFile
lcBatFile = FORCEPATH("makgraph.bat", SYS(2023))

RETURN m.lcBatFile
ENDPROC

Next, the GenerateGraphCall method constructs the necessary call to the graphing engine.
That method is abstract in this class, as the details vary for the different graphing engines.
The returned string is written to the batch file, followed by a timeout command to ensure
the batch file has time to complete the task before the batch file ends.

Create Complex Graphs with GraphViz

Copyright 2020, Tamar E. Granor Page 14 of 46

With the batch file completed, the next step is to run it; that’s what the RunBatFile method,
shown in Listing 9 does. The error handling here is for the case where the RUN command
is unable to find or to run the batch file. It doesn’t catch cases where the batch file itself
fails.

Listing 9. The RUN command is used to execute the batch file that creates the graph.

PROCEDURE RunBatFile(lcBatFile)
* Run the specified batch file

*-- Store the setting of "on error", and then override it
LOCAL lcSavError
lcSavError = on("error")

LOCAL llError
llError = .F.

ON ERROR llError = .T.

RUN /n7 &lcBatFile

*-- restore the value of "on error"
ON ERROR &lcSavError

RETURN m.llError
ENDPROC

The original version of the class had a call to the DeleteBatFile method after the call to
RunBatFile, but too often, that method ran too soon and caused problems. So this version of
the code omits the call. You could use VFP’s WAIT command or the Windows API Sleep
function to ensure the batch file has finished before running it, if deleting the batch file is
critical.

Finally, if an error occurred in running the batch file, we add that information to the error
log. The AddError method is shown in Listing 10.

Listing 10. The AddError method adds a new message to the cErrorMessages property.

PROCEDURE AddError(tcMessage)
* Add an error message to the error property

This.cErrorMessages = This.cErrorMessages + ALLTRIM(m.tcMessage) + CHR(13) + CHR(10)

RETURN
ENDPROC

GVGraph has a number of methods, shown in Table 1, designed to be used by the
GenerateGVNode and GenerateGVNodeEdges methods. They provide information used in
constructing those lines.

Create Complex Graphs with GraphViz

Copyright 2020, Tamar E. Granor Page 15 of 46

Table 1. These methods are designed to be called by the GenerateGVNode and GenerateGVNodeEdges
methods.

Method Purpose Abstract?
GetNodeColor Returns the color for the specified node type, by looking it up in the color

cursor.

GetNodeID Returns a unique ID for the specified node. Yes
GetNodeLabel Returns a label for the specified node. Yes
GetNodeShape Returns the shape for the specified node type, by looking it up in the shape

cursor.

WriteGraphLine Saves the specified line of the graph to the graph description file.

The final set of methods is for displaying the graph. ShowGraph, shown in Listing 11,
manages the process of displaying the graph. After confirming the graph exists (including
waiting up to three seconds for the file to finish being written), it calls ShowGraphNative to
do the actual display.

Listing 11. ShowGraph manages the process of displaying the graph once it’s created.

PROCEDURE ShowGraph
* Display the generated graph.
* Parameter indicates where to display it

LOCAL llProceed

llProceed = .T.

IF EMPTY(This.cGraphFile)
 This.AddError("Graph file not specified. Can't display graph.")
 llProceed = .F.
ENDIF

IF m.llProceed
 * Allow some time in case file hasn't been written yet.
 lnStart = SECONDS()
 DO WHILE NOT FILE(This.cGraphFile) AND SECONDS() - m.lnStart < 3
 ENDDO

 IF NOT FILE(This.cGraphFile)
 This.AddError("Graph file doesn't exist. Can't display.")
 llProceed = .F.
 ENDIF
ENDIF

IF NOT m.llProceed
 RETURN .F. && early exit
ENDIF

This.ShowGraphNative()

RETURN
ENDPROC

Create Complex Graphs with GraphViz

Copyright 2020, Tamar E. Granor Page 16 of 46

ShowGraphNative, shown in Listing 12, uses a routine called ExecuteFile, created by Doug
Hennig and documented in his paper at https://doughennig.com/papers/Pub/E-WAPI.pdf,
to display the graph using whatever application Windows is set to for the specified file
type. ExecuteFile is a wrapper around the ShellExecute API function, and it returns the
success value. Anything under 32 means failure.

Listing 12. ShowGraphNative displays the graph using the “native” application for the file type.

PROCEDURE ShowGraphNative
* Show the newly generated graph in its native app

* If we get here (assuming we came in the right way), the file exists
* Use ShellExecute to "run" the file via Doug's wrapper

* handle failure
LOCAL lnSuccess
lnSuccess = ExecuteFile(This.cGraphFile,'open')
IF m.lnSuccess < 32
 This.AddError("Unable to display graph. Error # " + TRANSFORM(m.lnSuccess)
ENDIF m.lnSuccess < 32

RETURN
ENDPROC

My client’s application maintains a list of preferred applications for various file types, so it
includes an alternative method for displaying the graphs and has code in ShowGraph to
decide which method to use.

A dot-specific subclass

The second class in my class hierarchy is GVDotGraph (gvdotgraph.prg in the downloads
for this session), which sets up the dot-specific aspects of generating graphs.

The Setup method adds one line, shown in Listing 13, to provide the path to the dot
executable. Here, it’s installed in the default location. If you’ve installed it elsewhere, you’ll
need to modify this line.

Listing 13. This line, added to the Setup method, points to the dot executable.

This.SetGVPath("C:\Program Files\Graphviz 2.44.1\bin\dot.exe")

Three methods that are abstract in GVGraph are populated here. Since this class knows it’s
using dot, GenerateGraphCall can build the command-line instruction to execute it. The
code is shown in Listing 14.

Listing 14. GenerateGraphCall constructs the line needed to run dot, passing in the graph description file and
generating output in the specified format.

PROCEDURE GenerateGraphCall
* Set up the call to DOT based on properties
LOCAL lcGraphCall

https://doughennig.com/papers/Pub/E-WAPI.pdf

Create Complex Graphs with GraphViz

Copyright 2020, Tamar E. Granor Page 17 of 46

lcGraphCall = '"' + This.cGVPath + '" -T' + ALLTRIM(This.cGraphFormat)
lcGraphCall = m.lcGraphCall + ' ' + ALLTRIM(This.cGVFile)
lcGraphCall = m.lcGraphCall + ' -o ' + ALLTRIM(This.cGraphFile)

RETURN m.lcGraphCall
ENDPROC

In addition, knowing we’re using dot and having decided we’re building only digraphs, the
GenerateGVHeader (Listing 15) and GenerateGVFooter (Listing 16) methods contain the
necessary code to create those parts of the graph definition file.

Listing 15. Knowing we’re using dot, we can construct the header portion of the graph description file,
specifying the type of graph, its orientation, and title information.

PROCEDURE GenerateGVHeader
* Put the header info into the GV file

LOCAL lcLine

lcLine = 'digraph GVFile {' + CHR(13) + CHR(10)
* First line starts a new file
This.WriteGraphLine(m.lcLine, .T.)

lcLine = ' graph[rankdir=' + This.cGraphOrientation + '];' + CHR(13) + CHR(10)
This.WriteGraphLine(m.lcLine)

IF NOT EMPTY(This.cGraphTitle)
 lcLine = ' graph[label="' + ;
 This.cGraphTitle + '", labelloc=top, labeljust=left, fontsize=24];' + ;
 CHR(13) + CHR(10)
 This.WriteGraphLine(m.lcLine)
ENDIF

RETURN
ENDPROC

Listing 16. The footer for a dot graph is simply a closing curly brace.

PROCEDURE GenerateGraphFooter
* Just close the curly brace

This.WriteGraphLine('}')

RETURN
ENDPROC

This is as much as we can do generically. Everything else is specific to the graph we’re
constructing.

Create Complex Graphs with GraphViz

Copyright 2020, Tamar E. Granor Page 18 of 46

Graphing Northwind Employees

In order to create any specific graph, you need to collect the data to be graphed and get it
into a form that makes it possible (even better, easy) to generate the graph definition file,
and a subclass of GVDotGraph that actually does the work.

As noted earlier, you can collect the data outside the graphing class or you can put the code
to collect the data into the GetGraphData method. For this first example, I’ve chosen to do it
separately and pass the cursor name into MakeGraph. The code to do so is shown in Listing
17 and included in the downloads for this session as NWEmps.PRG.

I’ve written previously about working with hierarchical data like this, so I won’t go into
detail here. If you want the background on how this code works, see the section “Who does
an employee manage?” in
http://www.tomorrowssolutionsllc.com/Articles/Handling%20Hierarchical%20Data.pdf;
the code here is based on MgrHierarchy.PRG described there. When it’s done, the cursor
MgrHierarchy contains each Northwind employee with the name and ID of their manager,
as shown in Figure 8; it’s ordered with the big boss first, then his direct reports, and then
their direct reports, and so on. (In fact, Northwind has only a three-level hierarchy, but this
code works no matter how many levels there are.)

Listing 17. This code drills down the Northwind management hierarchy and builds a cursor showing each
employee with information about their manager.

* Build the employee hierarchy from top to bottom
LOCAL iCurrentID, iLevel, cFirst, cLast, nCurRecNo, cMgrFirst, cMgrLast

OPEN DATABASE HOME(2) + "Northwind\Northwind"

CREATE CURSOR MgrHierarchy ;
 (cFirst C(15), cLast C(20), iLevel I, ;
 cMgrFirst C(15), cMgrLast C(15), iEmpID I, iMgrID I)
CREATE CURSOR EmpsToProcess ;
 (EmployeeID I, cFirst C(15), cLast C(20), iLevel I, ;
 cMgrFirst C(15), cMgrLast C(15), ReportsTo I)

INSERT INTO EmpsToProcess ;
 SELECT EmployeeID, FirstName, LastName, 1, "", "", ReportsTo ;
 FROM Employees ;
 WHERE ReportsTo = 0

SELECT EmpsToProcess

SCAN
 iCurrentID = EmpsToProcess.EmployeeID
 iLevel = EmpsToProcess.iLevel
 cFirst = EmpsToProcess.cFirst
 cLast = EmpsToProcess.cLast
 cMgrFirst = EmpsToProcess.cMgrFirst
 cMgrLast = EmpsToProcess.cMgrLast
 iReportsTo = EmpsToProcess.ReportsTo

http://www.tomorrowssolutionsllc.com/Articles/Handling%20Hierarchical%20Data.pdf

Create Complex Graphs with GraphViz

Copyright 2020, Tamar E. Granor Page 19 of 46

 * Insert this records into result
 INSERT INTO MgrHierarchy ;
 VALUES (m.cFirst, m.cLast, m.iLevel, ;
 m.cMgrFirst, m.cMgrLast, m.iCurrentID, m.iReportsTo)

 * Grab the current record pointer
 nCurRecNo = RECNO("EmpsToProcess")

 INSERT INTO EmpsToProcess ;
 SELECT EmployeeID, FirstName, LastName, m.iLevel + 1, ;
 m.cFirst, m.cLast, ReportsTo ;
 FROM Employees ;
 WHERE ReportsTo = m.iCurrentID

 * Restore record pointer
 GO m.nCurRecNo IN EmpsToProcess
ENDSCAN

SELECT MgrHierarchy

Figure 8. This cursor, created by the code in Listing 17, has one record for each Northwind employee, with
information about the employee and that person’s manager.

The class GraphNWEmp1 was used to create the simple graph in Figure 7; it’s included in
the downloads for this session as gvnwempgraph1.prg. It contains code in only five
methods.

The least interesting of these is the Setup method, which is extended to specify JPEG for
output, top-to-bottom orientation and a title of “Northwind Employees.” It’s shown in
Listing 18.

Listing 18. The Setup method of GraphNWEmp1 specifies a few characteristics of the graph.

PROCEDURE Setup
* Specify format and orientation

DODEFAULT()
IF EMPTY(This.cGraphFormat)

Create Complex Graphs with GraphViz

Copyright 2020, Tamar E. Granor Page 20 of 46

 * Specify format if we didn't already
 This.SetGraphFormat('jpeg')
ENDIF

* Set top to bottom orientation. (Other option is 'LR')
This.SetGraphOrientation('TB')

This.SetGraphTitle('Northwind Employees')

RETURN
ENDPROC

Conversely, the most interesting of these methods is GenerateGVNode, shown in Listing
19, which creates the line needed to specify a node.

Listing 19. The code in GenerateGVNode adds a line to the graph definition file for the current record.

PROCEDURE GenerateGVNode
* Generate GV line to create a single node,
* based on the current line of the cursor

LOCAL lcNodeDef, lcNodeID, lcNodeLabel

* Make sure we're in the right workarea
LOCAL lnOldSelect

lnOldSelect = SELECT()
SELECT (This.cDataCursor)

lcNodeID = This.GetNodeID(iEmpID)
lcNodeLabel = This.GetNodeLabel()

lcNodeDef = " " + m.lcNodeID + ;
 '[label="' + m.lcNodeLabel + '",fontname="' + This.cFontName + '"];' + ;
 CHR(13) + CHR(10)
This.WriteGraphLine(m.lcNodeDef)

SELECT (m.lnOldSelect)

RETURN m.lcNodeID

RETURN
ENDPROC

The GetNodeID and GetNodeLabel methods construct an ID value and the label we want to
display for each node. GetNodeID, shown in Listing 22, simply converts an integer
employee ID to character. Because it might be used for a record other than the current one
in the data cursor, it accepts the relevant employee ID as a parameter.

Listing 20. The GetNodeID method accepts an employee ID and converts it to a character ID value used to
uniquely identify the corresponding node in the graph.

PROCEDURE GetNodeID(lnEmpID)

Create Complex Graphs with GraphViz

Copyright 2020, Tamar E. Granor Page 21 of 46

LOCAL lcEmpID

lcEmpID = PADL(lnEmpID, 4)

RETURN m.lcEmpID
ENDPROC

GetNodeLabel (Listing 21) concatenates the employee’s name from the current record to
form the desired label to appear on the node.

Listing 21. For this graph, GetNodeLabel concatenates the employee’s name.

PROCEDURE GetNodeLabel
* Use the employee name as the label
LOCAL lcLabel

lcLabel = ALLTRIM(cFirst - (' ' + cLast))

RETURN m.lcLabel
ENDPROC

In this graph, each node can be the target of only a single edge, the one that comes from
that employee’s manager. The GenerateGVNodeEdges method (Listing 22) accepts the
node’s ID and adds a line to the graph definition file to create that edge. Note that the order
of the original data ensures that the manager’s node has already been defined before we
generate the edge. (In general, the code to define a node should appear before any edge
definitions referencing that node.)

Listing 22. In this example, there’s only one edge coming to a particular node.

PROCEDURE GenerateGVNodeEdges(tcNodeID)
* Generate the edges for the specified node

LOCAL lcParentID, lcChildID
LOCAL lcEdgeLine

LOCAL lnOldSelect
lnOldSelect = SELECT()
SELECT (This.cDataCursor)

IF NOT EMPTY(iMgrID)
 lcParentID = This.GetNodeID(iMgrID)

 lcEdgeLine = " " + m.lcParentID + " -> " + m.tcNodeID + ";" + CHR(13) + CHR(10)
 This.WriteGraphLine(m.lcEdgeLine)
ENDIF

SELECT (m.lnOldSelect)

RETURN
ENDPROC

Create Complex Graphs with GraphViz

Copyright 2020, Tamar E. Granor Page 22 of 46

In some cases, a newly added node might be the target of multiple edges in the graph. In
such cases, the GenerateGVEdges method might contain a loop.

Running the graph

With all the pieces in places, all that’s left is to put them together. In this case, that means
running the code to set up the data, instantiating the specific class and calling the
MakeGraph method. If we want, we can display the graph right away by calling the
ShowGraph method. The program in Listing 23, included in the downloads for this session
as RunGraphNWEmp1.PRG, does all that.

Listing 23. It takes only a little code to create the graph, once all the components have been built.

* Northwind Employee graph, version 1 (simple)

* First, collect the data
DO NWEmps.PRG

* Now create the graph
LOCAL loGenerateGraph
loGenerateGraph = NEWOBJECT("GraphNWEmp1", "gvNWEmpGraph1.prg")

IF VARTYPE(loGenerateGraph) = 'O' AND NOT ISNULL(m.loGenerateGraph)
 loGenerateGraph.MakeGraph('mgrhierarchy','jpeg')
 IF EMPTY(loGenerateGraph.cErrorMessages)
 loGenerateGraph.ShowGraph()
 ELSE
 MESSAGEBOX(loGenerateGraph.cErrorMessages)
 ENDIF
ENDIF

RETURN

Enhancing nodes
The graph in Figure 7 is basic. There are lots of things we can do to make it more
interesting. In this section, we’ll look at options that make graphs more attractive and
informative.

Varying shapes

While it’s not particularly meaningful in this example, in some cases, using different shapes
for different types of nodes can be useful. The graph shown in Figure 9 chooses a shape for
each node, based on the level in the organizational chart. The class to create it is
GraphNWEmp2 and it’s in gvNWEmpGraph2.PRG in the downloads for this session. The
downloads also include RunGraphNWEmp2.PRG to instantiate the class and create the
graph.

Create Complex Graphs with GraphViz

Copyright 2020, Tamar E. Granor Page 23 of 46

Figure 9. In this version of the graph, nodes at different levels in the organizational structure use different
shapes.

It takes only a little additional code to get from the previous example to this one. First, we
need to populate the shape cursor in the LoadColorsAndShapes method. Here (Listing 24),
the list is hard-coded, but you could populate the cursor from a table or a text file, if you
want.

Listing 24. To specify different shapes for different kinds of nodes, populate the shapes cursor.

PROCEDURE LoadColorsAndShapes
* Populate the color/shape cursors

INSERT INTO csrShapes (TypeCode, cShape) ;
 VALUES ("1", "box")
INSERT INTO csrShapes (TypeCode, cShape) ;
 VALUES ("2", "ellipse")
INSERT INTO csrShapes (TypeCode, cShape) ;
 VALUES ("3", "diamond")

RETURN
ENDPROC

With shapes available, we need to modify GenerateGVNode to look up the desired shape
and include it in the description of each node in the graph definition file. Listing 25 shows
the modified part of the mode.

Listing 25. To include shape information for each node, we look up the shape to use and then include the
shape attribute in the node definition.

lcNodeShape = This.GetNodeShape(TRANSFORM(iLevel))

lcNodeDef = " " + m.lcNodeID + '[shape="' + m.lcNodeShape + ;
 '",label="' + m.lcNodeLabel + ;
 '",fontname="' + This.cFontName + '"];' + CHR(13) + CHR(10)

The shape cursor is designed to use character strings for the node types, so the call to
GetNodeShape converts the iLevel field, which contains the employee’s level in the
hierarchy, into a string.

Create Complex Graphs with GraphViz

Copyright 2020, Tamar E. Granor Page 24 of 46

Listing 26 shows the graph definition file for this new version of the Employee hierarchy.
You can see that each node definition now includes the shape attribute.

Listing 26. This version of the graph definition file includes the shape attribute for each node.

digraph GVFile {
 graph[rankdir=TB];
 graph[label="Northwind Employees", labelloc=top, labeljust=left, fontsize=24];
 2[shape="box",label="Andrew Fuller",fontname="Arial"];
 1[shape="ellipse",label="Nancy Davolio",fontname="Arial"];
 2 -> 1;
 3[shape="ellipse",label="Janet Leverling",fontname="Arial"];
 2 -> 3;
 4[shape="ellipse",label="Margaret Peacock",fontname="Arial"];
 2 -> 4;
 5[shape="ellipse",label="Steven Buchanan",fontname="Arial"];
 2 -> 5;
 8[shape="ellipse",label="Laura Callahan",fontname="Arial"];
 2 -> 8;
 6[shape="diamond",label="Michael Suyama",fontname="Arial"];
 5 -> 6;
 7[shape="diamond",label="Robert King",fontname="Arial"];
 5 -> 7;
 9[shape="diamond",label="Anne Dodsworth",fontname="Arial"];
 5 -> 9;
}

Once you have shapes, you can decorate them. The style attribute lets you modify the shape
in a variety of ways. You can specify “filled” to fill in the background (in gray, by default, but
you can specify the color) and “rounded” to round the corners of the shapes. You can also
specify the type of line to use for the shape’s border (“dashed”, “dotted”, “solid”) as well as
that the border should be “bold”. We’ll demonstrate filled shapes in the next section in
conjunction with colors.

Varying colors

Color offers another way to provide additional information in a graph. As noted earlier, you
can set the font color for an element using the fontcolor attribute. For node shapes, you can
set two different colors. The color attribute specifies the border color of a shape.

If you include the filled attribute, you can also specify the inside color. To have it the same
as the border color, you just need the color and filled attributes. If you want the inside of a
shape to use a different color than the border, specify the fillcolor attribute.

GraphViz offers a number of ways to specify colors. You can provide RGB, RGBA or HSV
values, or you can specify a color name. The options for color names (which we’ll use here)
are documented at http://graphviz.org/doc/info/colors.html.

Let’s expand the previous example to color-code nodes according to job title, as in Figure
10.

http://graphviz.org/doc/info/colors.html

Create Complex Graphs with GraphViz

Copyright 2020, Tamar E. Granor Page 25 of 46

Figure 10. In this version of the employee hierarchy, nodes are color-code based on the job title.

First, we need to add job title information to the cursor we’re using to build the graph. That
requires adding that field to both cursors in NWEmps and then populating the new field.
Listing 27 shows the updated code; it’s included in the downloads for this session as
NWEmpsWTitle.PRG.

Listing 27. This code collects the employee data including job title.

* Build the employee hierarchy from top to bottom
LOCAL iCurrentID, iLevel, cFirst, cLast, nCurRecNo, cMgrFirst, cMgrLast
LOCAL iReportsTo, cTitle

OPEN DATABASE HOME(2) + "Northwind\Northwind"

CREATE CURSOR MgrHierarchy (;
 cFirst C(15), cLast C(20), iLevel I, ;
 cMgrFirst C(15), cMgrLast C(15), ;
 iEmpID I, iMgrID I, cTitle C(30) ;
)
CREATE CURSOR EmpsToProcess (;
 EmployeeID I, cFirst C(15), cLast C(20), iLevel I, ;
 cMgrFirst C(15), cMgrLast C(15), ReportsTo I, cTitle C(30) ;
)

INSERT INTO EmpsToProcess ;
 SELECT EmployeeID, FirstName, LastName, 1, "", "", ReportsTo, Title ;
 FROM Employees ;
 WHERE ReportsTo = 0

SELECT EmpsToProcess

SCAN
 iCurrentID = EmpsToProcess.EmployeeID
 iLevel = EmpsToProcess.iLevel
 cFirst = EmpsToProcess.cFirst
 cLast = EmpsToProcess.cLast
 cMgrFirst = EmpsToProcess.cMgrFirst
 cMgrLast = EmpsToProcess.cMgrLast
 iReportsTo = EmpsToProcess.ReportsTo
 cTitle = EmpsToProcess.cTitle

Create Complex Graphs with GraphViz

Copyright 2020, Tamar E. Granor Page 26 of 46

 * Insert this records into result
 INSERT INTO MgrHierarchy ;
 VALUES (m.cFirst, m.cLast, m.iLevel, ;
 m.cMgrFirst, m.cMgrLast, ;
 m.iCurrentID, m.iReportsTo, m.cTitle)

 * Grab the current record pointer
 nCurRecNo = RECNO("EmpsToProcess")

 INSERT INTO EmpsToProcess ;
 SELECT EmployeeID, FirstName, LastName, m.iLevel + 1, ;
 m.cFirst, m.cLast, ReportsTo, Title ;
 FROM Employees ;
 WHERE ReportsTo = m.iCurrentID

 * Restore record pointer
 GO m.nCurRecNo IN EmpsToProcess
ENDSCAN

SELECT MgrHierarchy

We need to further extend the graphing class to add colors; the new version is in
gvNWEmpGraph3.PRG in the downloads for this session. First, we populate the color
cursor. Listing 28 shows the code added to LoadColorsAndShapes for that.

Listing 28. To use colors in the graphing class, we need to set up the color cursor.

INSERT INTO csrColors VALUES ("VP", "gold") && Vice President
INSERT INTO csrColors VALUES ("SM", "deepskyblue") && Sales Manager
INSERT INTO csrColors VALUES ("SR", "hotpink1") && Sales Representative
INSERT INTO csrColors VALUES ("SC", "sienna1") && Sales Coordinator

As the code shows, the cursor expects the a two-letter type, but the job title is much longer.
The new ConvertTitleToAbbrev method, shown in Listing 29, accepts a job title and
returns the appropriate abbreviation. It’s written to address the possibility that we may
have other kinds of vice presidents, managers, representatives or coordinators, and want
to color them all the same. (Of course, two-letter codes may not be the right way for you to
do this, so you could modify the cursor definition for your needs. It’s likely in a production
database that there’d be a table of job titles and the primary key or another identifier from
that table could be used for the color look-up.)

Listing 29. The color cursor uses a two-letter code, so this method converts job titles to two-letter codes.

PROCEDURE ConvertTitleToAbbrev(m.tcTitle)
* Convert full job title to abbrev.
* Generalizing here a little from the actual NW list

LOCAL lcTitle, lcAbbrev

lcTitle = UPPER(m.tcTitle)
lcAbbrev = ''

Create Complex Graphs with GraphViz

Copyright 2020, Tamar E. Granor Page 27 of 46

DO CASE
CASE "VICE PRESIDENT" $ m.lcTitle
 lcAbbrev = "VP"
CASE "MANAGER" $ m.lcTitle
 lcAbbrev = "SM"
CASE "REPRESENTATIVE" $ m.lcTitle
 lcAbbrev = "SR"
CASE "COORDINATOR" $ m.lcTitle
 lcAbbrev = "SC"
ENDCASE

RETURN m.lcAbbrev
ENDPROC

The GetNodeColor method from gvGraph expects to receive the two-letter code. In this
case, I’ve extended the method to accept the full job title, do the conversion and then call
the original code. This version is show in Listing 30.

Listing 30. To make GetNodeColor work with the job title, we need to call ConvertTitleToAbbrev and then
pass the result to the original GetNodeColor code.

PROCEDURE GetNodeColor(tcNodeType)
* Add translation of full title to shortcut

LOCAL lcTypeAbbrev, lcColor

lcTypeAbbrev = This.ConvertTitleToAbbrev(m.tcNodeType)
lcColor = DODEFAULT(m.lcTypeAbbrev)

RETURN m.lcColor
ENDPROC

The final change in this class is for GenerateGVNode to call GetNodeColor and use the result
in the node definition. Listing 31 shows the changed portion of the method; note the
addition of both the color and style attributes to the line.

Listing 31. This section of the GenerateGVNode method retrieves the desired color and adds color
information to the node definition.

lcNodeColor = This.GetNodeColor(cTitle)

lcNodeDef = " " + m.lcNodeID + '[shape="' + m.lcNodeShape + ;
 '",color="' + m.lcNodeColor + '",style="filled' + ;
 '",label="' + m.lcNodeLabel + ;
 '",fontname="' + This.cFontName + '"];' + CHR(13) + CHR(10)

The code to produce the graph requires two changes from the previous version. First, as in
the prior example, we need to change the class name and the name of the PRG containing
the class. We also need to call NWEmpsWTitle, rather than NWEmps. The new code, shown
in Listing 32, is included in the downloads for this session as RunGraphNWEmp3.PRG. The
graph definition file is shown in Listing 33.

Create Complex Graphs with GraphViz

Copyright 2020, Tamar E. Granor Page 28 of 46

Listing 32, Run this code to produce the graph in Figure 10.

* Northwind Employee graph, version 3 (shapes and colors)

* First, collect the data
DO NWEmpsWTitle.PRG

* Now create the graph
LOCAL loGenerateGraph
loGenerateGraph = NEWOBJECT("GraphNWEmp3", "gvNWEmpGraph3.prg")

IF VARTYPE(loGenerateGraph) = 'O' AND NOT ISNULL(m.loGenerateGraph)
 loGenerateGraph.MakeGraph('mgrhierarchy','jpeg')
 IF EMPTY(loGenerateGraph.cErrorMessages)
 loGenerateGraph.ShowGraph()
 ELSE
 MESSAGEBOX(loGenerateGraph.cErrorMessages)
 ENDIF
ENDIF

RETURN

Listing 33. This graph definition file results in the graph shown in Figure 10.

digraph GVFile {
 graph[rankdir=TB];
 graph[label="Northwind Employees", labelloc=top, labeljust=left, fontsize=24];
 2[shape="box",color="gold",style="filled",label="Andrew
Fuller",fontname="Arial"];
 1[shape="ellipse",color="hotpink1",style="filled",label="Nancy
Davolio",fontname="Arial"];
 2 -> 1;
 3[shape="ellipse",color="hotpink1",style="filled",label="Janet
Leverling",fontname="Arial"];
 2 -> 3;
 4[shape="ellipse",color="hotpink1",style="filled",label="Margaret
Peacock",fontname="Arial"];
 2 -> 4;
 5[shape="ellipse",color="deepskyblue",style="filled",label="Steven
Buchanan",fontname="Arial"];
 2 -> 5;
 8[shape="ellipse",color="sienna1",style="filled",label="Laura
Callahan",fontname="Arial"];
 2 -> 8;
 6[shape="diamond",color="hotpink1",style="filled",label="Michael
Suyama",fontname="Arial"];
 5 -> 6;
 7[shape="diamond",color="hotpink1",style="filled",label="Robert
King",fontname="Arial"];
 5 -> 7;
 9[shape="diamond",color="hotpink1",style="filled",label="Anne
Dodsworth",fontname="Arial"];
 5 -> 9;
}

Create Complex Graphs with GraphViz

Copyright 2020, Tamar E. Granor Page 29 of 46

As noted earlier, you can specify different colors for the shape’s border and fill. Figure 11
shows the result if you specify the fillcolor attribute rather than the color attribute. In this
case, the border uses the default black, but the interior uses the specified color. To produce
this result, change “color” to “fillcolor” in the third line of GenerateGVNode that’s shown in
Listing 31.

Figure 11. This shows what the graph would look like if the fillcolor attribute were used instead of the color
attribute.

Handling more complex graphs
Lots of things we want to graph are more complicated than an organizational chart. For
example, some graphs involve nodes that both connect to and receive connections from
multiple nodes. One such example is a database diagram, showing relationships between
tables.

With the classes already shown, the hardest part of this problem is ordering the tables so
that we only try to create edges for tables that already have nodes. It’s easy to get the list of
tables and the relationships in a database, but figuring out what order to put them in is
complex.

As we’ll see later in this section, to draw the graph, we need not just the cursor listing the
tables in order, but one of the cursors that’s created along the way. So, for this graph, it
makes sense to collect the data right in the graphing class. To make that easier, this
subclass of gvDotGraph, called GraphDB1 (included in the downloads for this session as
gbDBGraph1.PRG), has a new property, cDatabase, and a method SetDatabase (shown in
Listing 34) that accepts the name and path to the database and stores it in cDatabase.

Listing 34. This method accepts the name and path of a database, confirms the file exists, and saves it to the
class’s cDatabase property.

PROCEDURE SetDatabase(tcDatabase)
* Set the cDatabase property

LOCAL llSuccess

llSuccess = .T.

DO CASE

Create Complex Graphs with GraphViz

Copyright 2020, Tamar E. Granor Page 30 of 46

CASE EMPTY(m.tcDatabase)
 This.AddError("You must specify a database to graph.")
 llSuccess = .F.

CASE NOT FILE(FORCEEXT(tcDatabase, 'dbc'))
 This.AddError("You must pass a database (DBC) to SetDatabase.")
 llSuccess = .F.

OTHERWISE
 This.cDatabase = m.tcDatabase

ENDCASE
RETURN m.llSuccess

The code to make the list of tables goes in the GetGraphData method, shown in Listing 35.
It does the job for any database that doesn’t have any cyclical relationships (that is, where
table a is related to table b, which is related to table c, which is related to table a).

Listing 35. This code builds a list of tables in a database and their relations in an order that lets us graph
them.

* Construct data showing all tables and relations
* in specified database, in an order that lets us
* create the graph.
LPARAMETERS cDatabase && include path

* First grab relation information from the database
OPEN DATABASE (m.cDataBase)
LOCAL aRelns[1]
ADBOBJECTS(aRelns,'relation')
CREATE CURSOR csrRelns ;
 (cChild C(128), cParent C(128), cChildTag C(10), cParentTag C(10))
INSERT INTO csrRelns FROM ARRAY aRelns
CLOSE DATABASES

* Next build a list of tables, showing how many relations
* each is involved in, both as parent and child
SELECT cParent, COUNT(*) AS nParentCount ;
 FROM csrRelns ;
 GROUP BY 1 ;
 INTO CURSOR csrParentCount

SELECT cChild, COUNT(*) as nChildCount ;
 FROM csrRelns ;
 GROUP BY 1 ;
 INTO CURSOR csrChildCount

SELECT objectname as cTable, ;
 NVL(nParentCount,0) as nParentCount, ;
 NVL(nChildCount,0) as nChildCount ;
 FROM FORCEEXT(m.cDatabase, 'dbc');
 LEFT JOIN csrParentCount ;
 ON UPPER(objectname) = UPPER(cParent) ;

Create Complex Graphs with GraphViz

Copyright 2020, Tamar E. Granor Page 31 of 46

 LEFT JOIN csrChildCount ;
 ON UPPER(objectname) = UPPER(cChild) ;
 WHERE objecttype = 'Table' ;
 INTO CURSOR csrTables READWRITE

* Start building the list of tables with those
* that don't appear as children or are only
* children in a self-join
SELECT UPPER(cTable) as cTable ;
 FROM csrTables ;
 WHERE nChildCount = 0 ;
UNION ALL ;
SELECT UPPER(cTable) AS cTable ;
 FROM csrTables ;
 JOIN (SELECT * FROM csrRelns ;
 WHERE cChild = cParent) csrSelfJoin ;
 ON UPPER(cTable) = cParent ;
 WHERE nChildCount = 1 ;
INTO CURSOR csrTableOrder READWRITE

LOCAL lDone
lDone = .F.

* Use the list so far to pull in other tables
* for which we now have all parents, until
* all tables are in the list or we can't
* get our hands on the others because of complex
* relationships
DO WHILE NOT m.lDone
 IF RECCOUNT("csrTableOrder") = RECCOUNT("csrTables")
 lDone = .T.

 ELSE
 SELECT DISTINCT cChild AS cTable ;
 FROM csrRelns ;
 JOIN csrTableOrder ;
 ON csrTableOrder.cTable = csrRelns.cParent ;
 WHERE cChild NOT IN (SELECT * FROM csrTableOrder csrTO) ;
 AND NOT EXISTS (SELECT cParent FROM csrRelns csrR ;
 WHERE csrR.cChild = csrRelns.cChild ;
 AND csrR.cParent NOT IN (;
 SELECT cTable FROM csrTableOrder csrTO2)) ;
 INTO CURSOR csrAddChildren

 IF _TALLY = 0
 lDone = .T.
 ENDIF

 SELECT csrTableOrder
 APPEND FROM DBF("csrAddChildren")

 ENDIF
ENDDO

RETURN

Create Complex Graphs with GraphViz

Copyright 2020, Tamar E. Granor Page 32 of 46

The code has four sections. The first two are fairly simple. First, we use ADBObjects() to get
a list of relations in the database and put it into a cursor. Next, we use that information and
the database itself to build a list of the tables in the database with a count of how many
times that table appears as a parent in a relation and how times it appears as a child.

Step 3 is to put into our result cursor a list of those tables we can start with when drawing
nodes. That’s any table that appears only as a parent, and any table that appears as a child
only in a relationship with itself (like the Employee table we worked with earlier in this
paper).

The last step is the hard part. We need to put the rest of the tables into the cursor in the
right order. The idea is that a table can only be added to the cursor if every table that’s a
parent to that table has already been added and, of course, we only want to add each table
once. The query inside the loop finds such tables.

The DO WHILE loop continues until either all tables have been added or the query doesn’t
find anything else to add.

Once we have the data, it doesn’t take much more than what we’ve already done to produce
a graph of it. Figure 12 shows a graph of the tables in the Northwind database.

Figure 12. This graph shows the tables in the Northwind database and the relations between them.

Create Complex Graphs with GraphViz

Copyright 2020, Tamar E. Granor Page 33 of 46

This graph is designed to go left-to-right rather than top-to-bottom, so the parameter to
SetGraphOrientation in the Setup method is ‘LR’. In addition, the Setup method uses the
cDatabase property to construct the title to pass to SetGraphTitle.

The table name is used for both the node ID and the node label. Listing 36 shows the
GetNodeID and GetNodeLabel methods.

Listing 36. The table name is used for both the node ID and the node label, though it’s set to proper case for
the label.

PROCEDURE GetNodeID(tcTable)

RETURN ALLTRIM(m.tcTable)
ENDPROC

PROCEDURE GetNodeLabel
* Use the table name as the label
LOCAL lcLabel

lcLabel = PROPER(ALLTRIM(cTable))

RETURN m.lcLabel
ENDPROC

Generating each node in the GenerateGVNode method (Listing 37) isn’t much different
than previous examples. Here, every node uses the same shape and fill color, so those
values are hard-coded. Note the use of the fillcolor attribute, rather than color; as you can
see in the figure, the border of each node is black.

Listing 37. As before, the GenerateGVNode method creates the definition line for a single node. Here, the
shape and color are hard-coded.

PROCEDURE GenerateGVNode
* Generate GV line to create a single node,
* based on the current line of the cursor

LOCAL lcNodeDef, lcNodeID, lcNodeLabel

* Make sure we're in the right workarea
LOCAL lnOldSelect

lnOldSelect = SELECT()
SELECT (This.cDataCursor)

lcNodeID = This.GetNodeID(cTable)
lcNodeLabel = This.GetNodeLabel()

lcNodeDef = " " + m.lcNodeID + '[label="' + m.lcNodeLabel + ;
 '",shape="box",style="filled",fillcolor="orchid1"' + ;
 'fontname="' + This.cFontName + '"];' + CHR(13) + CHR(10)
This.WriteGraphLine(m.lcNodeDef)

Create Complex Graphs with GraphViz

Copyright 2020, Tamar E. Granor Page 34 of 46

SELECT (m.lnOldSelect)

RETURN m.lcNodeID

RETURN
ENDPROC

The most interesting work for this class happens in GenerateGVNodeEdges (Listing 38). It
uses the node ID parameter to retrieve the list of relations where this table is a child, that
is, a list of parent tables for this table, and then loops through the resulting cursor,
generating an edge for each parent.

Listing 38. To show the relations between tables, we use the cursor of relations that was created while
building the data.

PROCEDURE GenerateGVNodeEdges(tcNodeID)
* Generate the edges for the specified node

LOCAL lcEdgeLine

LOCAL lnOldSelect
lnOldSelect = SELECT()

* Retrieve cases where this is a child node from the relations cursor
SELECT cParent ;
 FROM csrRelns ;
 WHERE cChild == m.tcNodeID ;
 INTO CURSOR csrCurParents

LOCAL lcParentID

SCAN
 lcParentID = This.GetNodeID(csrCurParents.cParent)
 lcEdgeLine = " " + m.lcParentID + " -> " + m.tcNodeID + ";" + CHR(13) + CHR(10)
This.WriteGraphLine(m.lcEdgeLine)
ENDSCAN

USE IN (SELECT("csrCurParents"))

SELECT (m.lnOldSelect)

RETURN
ENDPROC

The last step is code to instantiate and call the class. That’s a short program
(RunDGGraph1.PRG in the downloads for this session), shown in Listing 39. It accepts the
database, including path, as a parameter.

Listing 39. Pass the database, including path, to this code to generate the graph of tables.

* Database graph, version 1 (basic)
LPARAMETERS tcDatabase

Create Complex Graphs with GraphViz

Copyright 2020, Tamar E. Granor Page 35 of 46

* Now create the graph
LOCAL loGenerateGraph
loGenerateGraph = NEWOBJECT("GraphDB1", "gvDBGraph1.prg")

IF VARTYPE(loGenerateGraph) = 'O' AND NOT ISNULL(m.loGenerateGraph)
 IF loGenerateGraph.SetDatabase(m.tcDatabase)
 loGenerateGraph.MakeGraph(.f.,'jpeg')
 ENDIF
 IF EMPTY(loGenerateGraph.cErrorMessages)
 loGenerateGraph.ShowGraph()
 ELSE
 MESSAGEBOX(loGenerateGraph.cErrorMessages)
 ENDIF
ENDIF

RETURN

The graph definition for the Northwind database is shown in Listing 40.

Listing 40. This graph definition produces the graph shown in Figure 12.

digraph GVFile {
 graph[rankdir=LR];
 graph[label="Northwind tables and relations", labelloc=top, labeljust=left,
fontsize=24];

CATEGORIES[label="Categories",shape="box",style="filled",fillcolor="orchid1"fontname=
"Arial"];

CUSTOMERS[label="Customers",shape="box",style="filled",fillcolor="orchid1"fontname="A
rial"];

SHIPPERS[label="Shippers",shape="box",style="filled",fillcolor="orchid1"fontname="Ari
al"];

SUPPLIERS[label="Suppliers",shape="box",style="filled",fillcolor="orchid1"fontname="A
rial"];

CUSTOMERDEMOGRAPHICS[label="Customerdemographics",shape="box",style="filled",fillcolo
r="orchid1"fontname="Arial"];

REGION[label="Region",shape="box",style="filled",fillcolor="orchid1"fontname="Arial"]
;

EMPLOYEES[label="Employees",shape="box",style="filled",fillcolor="orchid1"fontname="A
rial"];
 EMPLOYEES -> EMPLOYEES;

CUSTOMERCUSTOMERDEMO[label="Customercustomerdemo",shape="box",style="filled",fillcolo
r="orchid1"fontname="Arial"];
 CUSTOMERDEMOGRAPHICS -> CUSTOMERCUSTOMERDEMO;
 CUSTOMERS -> CUSTOMERCUSTOMERDEMO;

Create Complex Graphs with GraphViz

Copyright 2020, Tamar E. Granor Page 36 of 46

ORDERS[label="Orders",shape="box",style="filled",fillcolor="orchid1"fontname="Arial"]
;
 CUSTOMERS -> ORDERS;
 SHIPPERS -> ORDERS;
 EMPLOYEES -> ORDERS;

PRODUCTS[label="Products",shape="box",style="filled",fillcolor="orchid1"fontname="Ari
al"];
 CATEGORIES -> PRODUCTS;
 SUPPLIERS -> PRODUCTS;

TERRITORIES[label="Territories",shape="box",style="filled",fillcolor="orchid1"fontnam
e="Arial"];
 REGION -> TERRITORIES;

EMPLOYEETERRITORIES[label="Employeeterritories",shape="box",style="filled",fillcolor=
"orchid1"fontname="Arial"];
 TERRITORIES -> EMPLOYEETERRITORIES;
 EMPLOYEES -> EMPLOYEETERRITORIES;

ORDERDETAILS[label="Orderdetails",shape="box",style="filled",fillcolor="orchid1"fontn
ame="Arial"];
 PRODUCTS -> ORDERDETAILS;
 ORDERS -> ORDERDETAILS;
}

Making edges more informative
In the previous example, while the edges show us the connections, they don’t provide much
other information. Like nodes, edges can take attributes. We can use those attributes to
improve the graph.

Adding edge labels

One obvious improvement is to show the names of the tags that the relationship between
tables is based on, as in Figure 13.

Create Complex Graphs with GraphViz

Copyright 2020, Tamar E. Granor Page 37 of 46

Figure 13. This version of the database diagram includes information about the tags used to create relations.

It only takes a little more code to add this information. Like nodes, edges can have a label
attribute. In the class GraphDB2 (included in the downloads for this session in
gvDBGraph2.PRG), the GenerateGVNodeEdges method has a little additional code to
include the label. The key part of the method is shown in Listing 41. It adds the cChildTag
and cParentTag fields to the query and sets up the desired separator (“ :: “). Inside the loop,
the label for that edge is constructed and the label attribute is added to the definition of the
edge.

Listing 41. Like nodes, edges can have labels.

SELECT cParent, cChildTag, cParentTag ;
 FROM csrRelns ;
 WHERE cChild == m.tcNodeID ;
 INTO CURSOR csrCurParents

LOCAL lcParentID, lcSeparator
lcSeparator = " :: "

SCAN
 lcParentID = This.GetNodeID(csrCurParents.cParent)
 lcLabel = ALLTRIM(cParentTag) + m.lcSeparator + ALLTRIM(cChildTag)
 lcEdgeLine = " " + m.lcParentID + " -> " + m.tcNodeID + ;
 '[label="' + m.lcLabel + '"]' + ;
 ";" + CHR(13) + CHR(10)
 This.WriteGraphLine(m.lcEdgeLine)
ENDSCAN

Listing 42 shows a few edge definitions from the graph definition file.

Listing 42. Edges accept attributes, just as graphs and nodes do.

 CUSTOMERS -> ORDERS[label="CUSTOMERID :: CUSTOMERID"];
 SHIPPERS -> ORDERS[label="SHIPPERID :: SHIPPERID"];
 EMPLOYEES -> ORDERS[label="EMPLOYEEID :: EMPLOYEEID"];

Create Complex Graphs with GraphViz

Copyright 2020, Tamar E. Granor Page 38 of 46

Changing arrowheads (and tails)

By default, in a directed graph, edges have an arrowhead at one end, and it uses a
traditional triangular arrowhead. But you can change the style of the arrowhead, and you
can also put a shape at the other end of the edge. GraphViz calls that an arrowtail. Figure
14 shows the database diagram using both arrowheads and arrowtails, with each end
indicating whether that side of the relationship is “one” (the vertical bar) or “many” (the
triangle).

Figure 14. In this version of the database diagram, the edges indicate the type of relation: one-to-one, one-to-
many, or many-to-many.

Three edge attributes are involved in providing this information. The dir attribute specifies
which ends of an edge should show arrows. Specify “both” to allow both arrowheads and
arrowtails, “forward” for arrowheads only, or “back” for arrowtails only.

The arrowhead and arrowtail attributes let you indicate which shapes to use for a given
edge. A set of common options are provided and documented at
http://graphviz.org/doc/info/attrs.html#k:arrowType. You can also define your own;
that’s documented at http://graphviz.org/doc/info/arrows.html.

To add appropriate shapes, we need additional code in the GenerateGVNodeEdges that
checks whether the tags involved in the relation are primary or candidate keys (in which
case, that side of the relation is “one”). The code that generates the edge than uses that
information. Listing 43 shows this complete version of the method in the class GraphDB3,
which is included in the downloads for this session in gvDBGraph3.prg. Because the “tee”
shape used for a “one” side of a relationship doesn’t show up well against a rectangle, the
GenerateGVNode method has been changed to use the “oval” shape instead of “box”.

Listing 43. This version of the method figures out whether each end of the relationship is one or many and
sets an appropriate arrow shape.

PROCEDURE GenerateGVNodeEdges(tcNodeID)
* Generate the edges for the specified node

LOCAL lcEdgeLine

http://graphviz.org/doc/info/attrs.html#k:arrowType
http://graphviz.org/doc/info/arrows.html

Create Complex Graphs with GraphViz

Copyright 2020, Tamar E. Granor Page 39 of 46

LOCAL lnOldSelect
lnOldSelect = SELECT()

* Retrieve cases where this is a child node from the relations cursor
SELECT cParent, cChildTag, cParentTag ;
 FROM csrRelns ;
 WHERE cChild == m.tcNodeID ;
 INTO CURSOR csrCurParents

LOCAL lcParentID, lcSeparator
lcSeparator = " :: "

LOCAL llParentSingle, llChildSingle, lnTagNo
LOCAL lcArrowHead, lcArrowTail
LOCAL lcParent

OPEN DATABASE (This.cDatabase)
SCAN
 lcParentID = This.GetNodeID(csrCurParents.cParent)
 lcLabel = ALLTRIM(cParentTag) + m.lcSeparator + ALLTRIM(cChildTag)

 * Figure out whether one or many at each end

 USE (tcNodeID) IN 0
 lnTagNo = TAGNO(ALLTRIM(csrCurParents.cChildTag), m.tcNodeID, m.tcNodeID)
 llChildSingle = PRIMARY(m.lnTagNo, m.tcNodeID) OR CANDIDATE(m.lnTagNo, m.tcNodeID)
 USE IN SELECT(m.tcNodeID)

 lcParent = ALLTRIM(csrCurParents.cParent)
 USE (m.lcParent) IN 0
 lnTagNo = TAGNO(ALLTRIM(csrCurParents.cParentTag), m.lcParent, m.lcParent)
 llParentSingle = PRIMARY(m.lnTagNo, m.lcParent) OR ;
 CANDIDATE(m.lnTagNo, m.lcParent)
 USE IN SELECT(m.lcParent)

 IF m.llParentSingle
 lcArrowTail = "tee"
 ELSE
 lcArrowTail = "invempty"
 ENDIF

 IF m.llChildSingle
 lcArrowHead = "tee"
 ELSE
 lcArrowHead = "invempty"
 ENDIF

 lcEdgeLine = " " + m.lcParentID + " -> " + m.tcNodeID + ;
 '[label="' + m.lcLabel + '",' + ;
 'dir="both",arrowhead="' + m.lcArrowHead + ;
 '",arrowtail="' + m.lcArrowTail +'"' + ;
 "];" + CHR(13) + CHR(10)
 This.WriteGraphLine(m.lcEdgeLine)
ENDSCAN

Create Complex Graphs with GraphViz

Copyright 2020, Tamar E. Granor Page 40 of 46

CLOSE DATABASES

USE IN (SELECT("csrCurParents"))

SELECT (m.lnOldSelect)

RETURN
ENDPROC

Listing 44 shows the graph definition file for this version.

Listing 44. This graph definition generates the graph in Figure 14, which includes arrowheads and
arrowtails that indicate the type of relation.

digraph GVFile {
 graph[rankdir=LR];
 graph[label="Northwind tables and relations", labelloc=top, labeljust=left,
fontsize=24];

CATEGORIES[label="Categories",shape="oval",style="filled",fillcolor="orchid1"fontname
="Arial"];

CUSTOMERS[label="Customers",shape="oval",style="filled",fillcolor="orchid1"fontname="
Arial"];

SHIPPERS[label="Shippers",shape="oval",style="filled",fillcolor="orchid1"fontname="Ar
ial"];

SUPPLIERS[label="Suppliers",shape="oval",style="filled",fillcolor="orchid1"fontname="
Arial"];

CUSTOMERDEMOGRAPHICS[label="Customerdemographics",shape="oval",style="filled",fillcol
or="orchid1"fontname="Arial"];

REGION[label="Region",shape="oval",style="filled",fillcolor="orchid1"fontname="Arial"
];

EMPLOYEES[label="Employees",shape="oval",style="filled",fillcolor="orchid1"fontname="
Arial"];
 EMPLOYEES -> EMPLOYEES[label="EMPLOYEEID ::
REPORTSTO",dir="both",arrowhead="invempty",arrowtail="tee"];

CUSTOMERCUSTOMERDEMO[label="Customercustomerdemo",shape="oval",style="filled",fillcol
or="orchid1"fontname="Arial"];
 CUSTOMERDEMOGRAPHICS -> CUSTOMERCUSTOMERDEMO[label="CUSTTYPEID ::
CUSTTYPEID",dir="both",arrowhead="invempty",arrowtail="tee"];
 CUSTOMERS -> CUSTOMERCUSTOMERDEMO[label="CUSTOMERID ::
CUSTOMERID",dir="both",arrowhead="invempty",arrowtail="tee"];

ORDERS[label="Orders",shape="oval",style="filled",fillcolor="orchid1"fontname="Arial"
];
 CUSTOMERS -> ORDERS[label="CUSTOMERID ::
CUSTOMERID",dir="both",arrowhead="invempty",arrowtail="tee"];

Create Complex Graphs with GraphViz

Copyright 2020, Tamar E. Granor Page 41 of 46

 SHIPPERS -> ORDERS[label="SHIPPERID ::
SHIPPERID",dir="both",arrowhead="invempty",arrowtail="tee"];
 EMPLOYEES -> ORDERS[label="EMPLOYEEID ::
EMPLOYEEID",dir="both",arrowhead="invempty",arrowtail="tee"];

PRODUCTS[label="Products",shape="oval",style="filled",fillcolor="orchid1"fontname="Ar
ial"];
 CATEGORIES -> PRODUCTS[label="CATEGORYID ::
CATEGORYID",dir="both",arrowhead="invempty",arrowtail="tee"];
 SUPPLIERS -> PRODUCTS[label="SUPPLIERID ::
SUPPLIERID",dir="both",arrowhead="invempty",arrowtail="tee"];

TERRITORIES[label="Territories",shape="oval",style="filled",fillcolor="orchid1"fontna
me="Arial"];
 REGION -> TERRITORIES[label="REGIONID ::
REGIONID",dir="both",arrowhead="invempty",arrowtail="tee"];

EMPLOYEETERRITORIES[label="Employeeterritories",shape="oval",style="filled",fillcolor
="orchid1"fontname="Arial"];
 TERRITORIES -> EMPLOYEETERRITORIES[label="TERRITORYI ::
TERRITORYI",dir="both",arrowhead="invempty",arrowtail="tee"];
 EMPLOYEES -> EMPLOYEETERRITORIES[label="EMPLOYEEID ::
EMPLOYEEID",dir="both",arrowhead="invempty",arrowtail="tee"];

ORDERDETAILS[label="Orderdetails",shape="oval",style="filled",fillcolor="orchid1"font
name="Arial"];
 PRODUCTS -> ORDERDETAILS[label="PRODUCTID ::
PRODUCTID",dir="both",arrowhead="invempty",arrowtail="tee"];
 ORDERS -> ORDERDETAILS[label="ORDERID ::
ORDERID",dir="both",arrowhead="invempty",arrowtail="tee"];
}

Enhancing the graph
The only graph-level attributes we’ve specified so far are rankdir, which controls the
orientation of the graph, and a few related to labeling the graph. But of course, there are
other things we can do to make the graph more attractive or informative.

Controlling the label

A bunch of attributes control labels. Those you’re most likely to want to adjust are listed in
Table 2. Many of these attributes can be applied to nodes and edges, as well as to the graph
itself.

Table 2. Use these attributes to control the appearance of labels.

Attribute Values Meaning
label <any string> The text for the specified label
labeljust l, c, r Indicates whether the label is left, center, or right justified
labelloc t, c, b Indicates whether the label goes at the top, center, or bottom. For the whole

graph, the only choices are t (top) and b (bottom)
fontname <an available

font>
Specifies the font used for text

Create Complex Graphs with GraphViz

Copyright 2020, Tamar E. Granor Page 42 of 46

fontcolor <a named
color>

Specifies the color used for text

fontsize <a number> Specifies the size of text

Figure 15 shows another version of the database diagram. All labels in this graph use Arial,
and the graph label is centered and shown in blue.

Figure 15. In this version of the database diagram, the graph’s label is centered and uses blue text, and all
labels (graph, node, and edges) use the same font.

This version uses the class GraphDB4 (contained in gvDBGraph4.PRG in the downloads for
this session) and is created by running RunDBGraph4.PRG. GenerateGVNodeEdges has
been changed to include the fontname attribute for edges. In addition, the
GenerateGVHeader method has been overridden with the version shown in Listing 45.

Listing 45. This method sets the labeljust attribute of the graph to center, and uses blue Arial for the label.

PROCEDURE GenerateGVHeader
* Put the header info into the GV file

LOCAL lcLine

lcLine = 'digraph GVFile {' + CHR(13) + CHR(10)
* First line starts a new file
This.WriteGraphLine(m.lcLine, .T.)

lcLine = ' graph[rankdir=' + This.cGraphOrientation + '];' + CHR(13) + CHR(10)
This.WriteGraphLine(m.lcLine)

IF NOT EMPTY(This.cGraphTitle)
 lcLine = ' graph[label="' + This.cGraphTitle + ;
 '", labelloc=top, labeljust=center, ' + ;
 'fontname="Arial",fontcolor="blue",fontsize=24];' + CHR(13) + CHR(10)
 This.WriteGraphLine(m.lcLine)
ENDIF

RETURN
ENDPROC

Create Complex Graphs with GraphViz

Copyright 2020, Tamar E. Granor Page 43 of 46

Other graph attributes

You can specify the background color for a graph using the bgcolor attribute. It uses the
same list of colors as the color, fillcolor, and fontcolor attributes described earlier in this
document.

If you’re dealing with a lot of data, you might need to stretch your graph over multiple
pages. The rotate attribute lets you rotate your graph 90 degrees.

Figure 16 shows one final version of the database diagram rotated 90 degrees and with the
background color set to ivory. To produce this version, the GenerateGVHeader method was
modified (in class GraphDB5 in gvDBGraph5.PRG in the downloads for this session) to add
the two additional attributes; the updated portion of the code is shown in Listing 46. The
graph definition file is shown in Listing 47.

Listing 46. To rotate the graph and set the background color, attributes are added to the graph section.

 lcLine = ' graph[label="' + This.cGraphTitle + ;
 '", labelloc=top, labeljust=center, ' + ;
 'fontname="Arial",fontcolor="blue",fontsize=24,' + ;
 'bgcolor="ivory",rotate=90' + ;
 '];' + CHR(13) + CHR(10)

Create Complex Graphs with GraphViz

Copyright 2020, Tamar E. Granor Page 44 of 46

Figure 16. You can rotate a graph to make it easier to print, as well as set a background color.

If I planned to use any of these additional attributes often, I’d enhance the class gvGraph to
make it easier to set them rather than hard-coding the changes.

Create Complex Graphs with GraphViz

Copyright 2020, Tamar E. Granor Page 45 of 46

Listing 47. This version of the graph definition file produces the graph shown in Figure 16.

digraph GVFile {
 graph[rankdir=LR];
 graph[label="Northwind tables and relations", labelloc=top, labeljust=center,
fontname="Arial",fontcolor="blue",fontsize=24,bgcolor="ivory",rotate=90];

CATEGORIES[label="Categories",shape="oval",style="filled",fillcolor="orchid1"fontname
="Arial"];

CUSTOMERS[label="Customers",shape="oval",style="filled",fillcolor="orchid1"fontname="
Arial"];

SHIPPERS[label="Shippers",shape="oval",style="filled",fillcolor="orchid1"fontname="Ar
ial"];

SUPPLIERS[label="Suppliers",shape="oval",style="filled",fillcolor="orchid1"fontname="
Arial"];

CUSTOMERDEMOGRAPHICS[label="Customerdemographics",shape="oval",style="filled",fillcol
or="orchid1"fontname="Arial"];

REGION[label="Region",shape="oval",style="filled",fillcolor="orchid1"fontname="Arial"
];

EMPLOYEES[label="Employees",shape="oval",style="filled",fillcolor="orchid1"fontname="
Arial"];
 EMPLOYEES -> EMPLOYEES[label="EMPLOYEEID ::
REPORTSTO",dir="both",arrowhead="tee",arrowtail="invempty",fontname="Arial"];

CUSTOMERCUSTOMERDEMO[label="Customercustomerdemo",shape="oval",style="filled",fillcol
or="orchid1"fontname="Arial"];
 CUSTOMERDEMOGRAPHICS -> CUSTOMERCUSTOMERDEMO[label="CUSTTYPEID ::
CUSTTYPEID",dir="both",arrowhead="tee",arrowtail="invempty",fontname="Arial"];
 CUSTOMERS -> CUSTOMERCUSTOMERDEMO[label="CUSTOMERID ::
CUSTOMERID",dir="both",arrowhead="tee",arrowtail="invempty",fontname="Arial"];

ORDERS[label="Orders",shape="oval",style="filled",fillcolor="orchid1"fontname="Arial"
];
 CUSTOMERS -> ORDERS[label="CUSTOMERID ::
CUSTOMERID",dir="both",arrowhead="tee",arrowtail="invempty",fontname="Arial"];
 SHIPPERS -> ORDERS[label="SHIPPERID ::
SHIPPERID",dir="both",arrowhead="tee",arrowtail="invempty",fontname="Arial"];
 EMPLOYEES -> ORDERS[label="EMPLOYEEID ::
EMPLOYEEID",dir="both",arrowhead="tee",arrowtail="invempty",fontname="Arial"];

PRODUCTS[label="Products",shape="oval",style="filled",fillcolor="orchid1"fontname="Ar
ial"];
 CATEGORIES -> PRODUCTS[label="CATEGORYID ::
CATEGORYID",dir="both",arrowhead="tee",arrowtail="invempty",fontname="Arial"];
 SUPPLIERS -> PRODUCTS[label="SUPPLIERID ::
SUPPLIERID",dir="both",arrowhead="tee",arrowtail="invempty",fontname="Arial"];

TERRITORIES[label="Territories",shape="oval",style="filled",fillcolor="orchid1"fontna
me="Arial"];

Create Complex Graphs with GraphViz

Copyright 2020, Tamar E. Granor Page 46 of 46

 REGION -> TERRITORIES[label="REGIONID ::
REGIONID",dir="both",arrowhead="tee",arrowtail="invempty",fontname="Arial"];

EMPLOYEETERRITORIES[label="Employeeterritories",shape="oval",style="filled",fillcolor
="orchid1"fontname="Arial"];
 TERRITORIES -> EMPLOYEETERRITORIES[label="TERRITORYI ::
TERRITORYI",dir="both",arrowhead="tee",arrowtail="invempty",fontname="Arial"];
 EMPLOYEES -> EMPLOYEETERRITORIES[label="EMPLOYEEID ::
EMPLOYEEID",dir="both",arrowhead="tee",arrowtail="invempty",fontname="Arial"];

ORDERDETAILS[label="Orderdetails",shape="oval",style="filled",fillcolor="orchid1"font
name="Arial"];
 PRODUCTS -> ORDERDETAILS[label="PRODUCTID ::
PRODUCTID",dir="both",arrowhead="tee",arrowtail="invempty",fontname="Arial"];
 ORDERS -> ORDERDETAILS[label="ORDERID ::
ORDERID",dir="both",arrowhead="tee",arrowtail="invempty",fontname="Arial"];
}

What else can GraphViz do?
The examples in this paper show only a subset of the capabilities provided by GraphViz.
Among the most important items not covered here is the ability to create subgraphs
(including a special set of subgraphs called clusters) that let you specify sections within
graphs. One of the uses of clusters is to create legends for graphs.

Because they’re easiest to show in a paper, all the examples here produce JPEG output, but
as noted earlier, GraphViz supports a wide range of output capabilities. Depending on your
goal, some of them may be more appropriate.

In this paper, we’ve looked only at the dot engine, but GraphViz includes several other
engines. My sense is that dot is likely to be the right choice for most graphs that come out of
database applications, but if you’re not getting what you want, look at the other engines.

	Introduction
	What is GraphViz?
	Setting up GraphViz

	What do we mean by “graph”?
	Working with GraphViz
	Documentation
	Formatting data for dot
	Describing the graph itself
	Describing nodes
	Describing edges

	Running dot

	Using GraphViz from VFP
	A generic GraphViz class
	A dot-specific subclass
	Graphing Northwind Employees
	Running the graph

	Enhancing nodes
	Varying shapes
	Varying colors

	Handling more complex graphs
	Making edges more informative
	Adding edge labels
	Changing arrowheads (and tails)

	Enhancing the graph
	Controlling the label
	Other graph attributes

	What else can GraphViz do?

